

MEOWL: Microbial Environments described using OWL

Sixth Annual Workshop of the Clinical and Translational Science Ontology Group Oct. 25, 2017, Ann Arbor, MI (presented remotely)

Ramona Walls

University of Arizona rwalls@cyverse.org [@RamonaWalls]

Outline

- iMicrobe: Search and discovery of world-wide microbial datasets
- MEOWL use cases and data mapping
- Ingesting data on microbial environments

https://imicrobe.us/

http://ivirus.us/

Search **▼**

Browse **▼**

Login

About→

iMicrobe

- Aggregates global microbial datasets (metagenomic and genomic)
- Provides HPC tools for analyzing data via CyVerse
- Offers online data discovery portal
- Original datasets:
 - Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP)
 - CAMERA (was a repository for metagenomic data)
 - These datasets had environmental metadata (habitat, chemical parameters) but they were not standardized.

MEOWL

Goals:

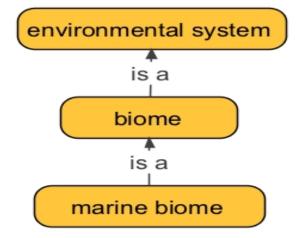
- Build on existing ontologies:
 - Environment Ontology (ENVO)
 - Ontology for Biomedical Investigations (OBI)
 - Chemical Entities of Biological Interest (CheBI)
 - Biological Collections Ontology (BCO)
- Map to existing standards and vocabularies
 - MIxS
 - BCO-DMO
 - ENVO

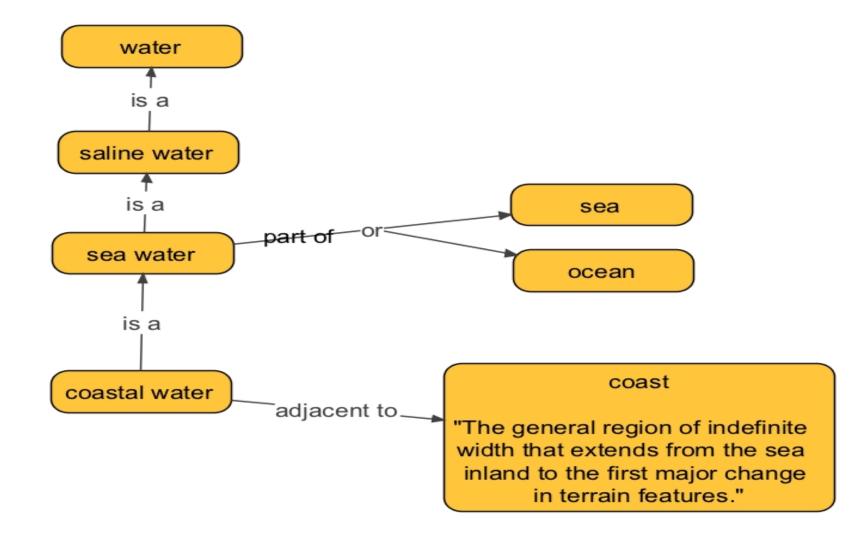
Cross-vocabulary mappings

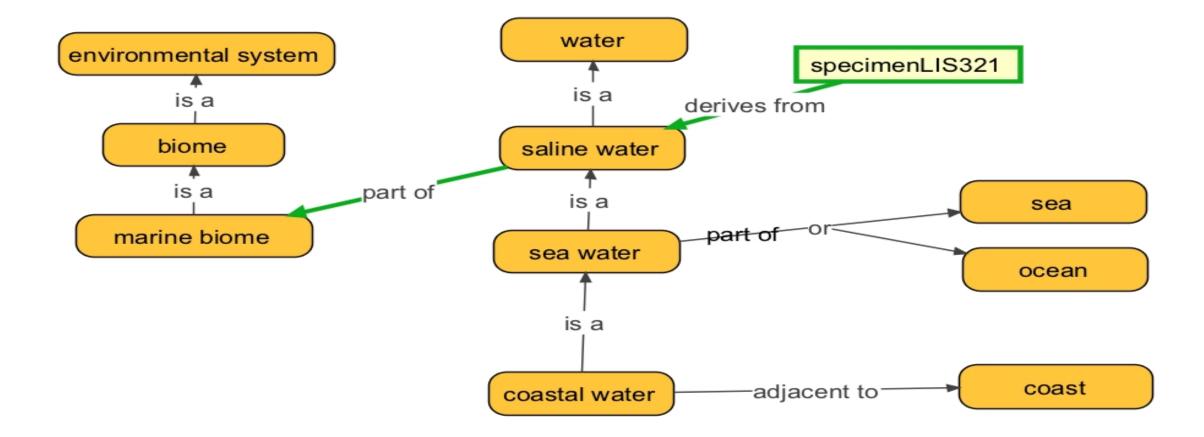
	A	B	C	D	Ξ		G	LT.		
			BCO-DMO				BCO-DMO	MIxS	maps to	other
1	rdfs:label	MEOWL short label	unit	other unit	From CAMERA data.xls	category	short name	package	MIxS term	synonyms
48	rbon dioxide concentration co2_conc			umol/kg	Carbon dioxide(CO2) - (umol/kg)	chemical		multi	dissolved carbon dioxide	
49	colored dissoloved organic ma	cdom	mg/m^3	RFU	CDOM - (RFU)	chemical	CDOM			
50	chlorophyll a concentration	chl_a_conc	mg/m^3 ug/	mg/l	Chla - (mg/1L)	chemical	chl_a	multi	chlorophyll	
51	chlorinity	chlorinity		mM	Chlorinity(Cl) - (mM)	chemical				
52		chlorinity		uM	Chlorinity(Cl) - (uM)	chemical				
53	not useful without more inform	mation			-	chemical	x			
54	annual chlorophyll density	chl_dens_annual		ug/kg	chlorophyll density/annual - (ug/l		x	multi	chlorophyll	
55	annual chlorophyll density	chl_dens_annual		ug/l	chlorophyll density/annual - (ug/l	chemical	x	multi	chlorophyll	
56	chlorophyll density	chl_dens		psu	chlorophyll density - (psu)	chemical		multi	chlorophyll	
57	chlorophyll density per sample	chl_dens_samp_mo	onth	ug/kg	chlorophyll density/sample mont	chemical		multi	chlorophyll	
58	chlorophyll density	chl_dens		ug/kg	chlorophyll density - (ug/kg)	chemical		multi	chlorophyll	
59	unit missing				Chloropigment	chemical		mulit	chlorophyll	
60	chloropigment concentration	chlpig_tot_lt53		ug/l	Chloropigment	chemical	chlpig_tot_lt	53		
61	chloropigment concentration	ropigment concentration chloropig_conc		ng/g dry wt	Chloropigment	chemical	chloropig_conc			
	chloropigment flux	chlpig_f		ug/m^2/day	Chloropigment	chemical	chlpig_f			
63	dissolved inorganic carbon co	dic_conc		mM	<u> </u>	chemical		multi		rganic carbon
64	dissolved inorganic carbon co	dic_conc		uM	Dissolved Inorg C(DIC) - (uM)	chemical		multi	dissolved ino	rganic carbon
65	dissolved inorganic carbon cor	dic_conc		umol/kg	dissolved inorganic carbon - (umc	chemical		multi	dissolved org	anic carbon
66	dissolved inorganic nitrogen c			umol/l	dissolved inorganic nitrogen - (√∝			water	total inorgan	_
67	dissolved inorganic phosphate	dop_conc		nmol/kg	dissolved inorganic phosphate - (ı	chemical		water	dissolved ino	rganic phospho
68	dissolved organic carbon conc	_		uM	. ,	chemical		multi	dissolved org	
69	dissolved organic carbon conc	doc_conc		umol/kg	dissolved organic carbon - (umol/	chemical		multi	dissolved org	ganic carbon
70	dissolved organic nitrogen cor			umol/kg	Dissolved Organic Nitrogen - (√∞	chemical		multi		anic nitrogen
71	dissolved organic nitrogen cor	don_conc		umol/kg	Dissolved Organic Nitrogen - (√∞	chemical		multi	dissolved org	anic nitrogen

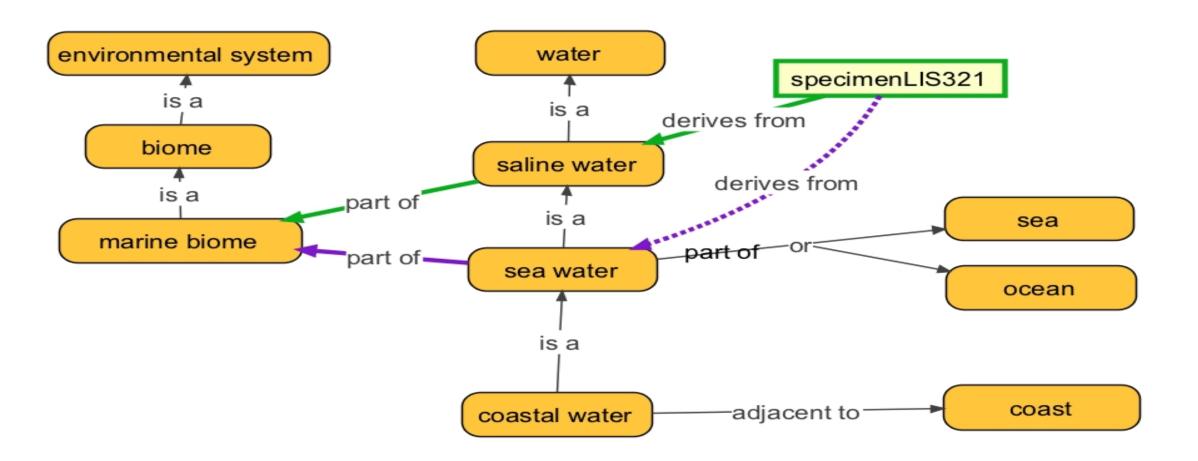
Data annotation with ENVO terms

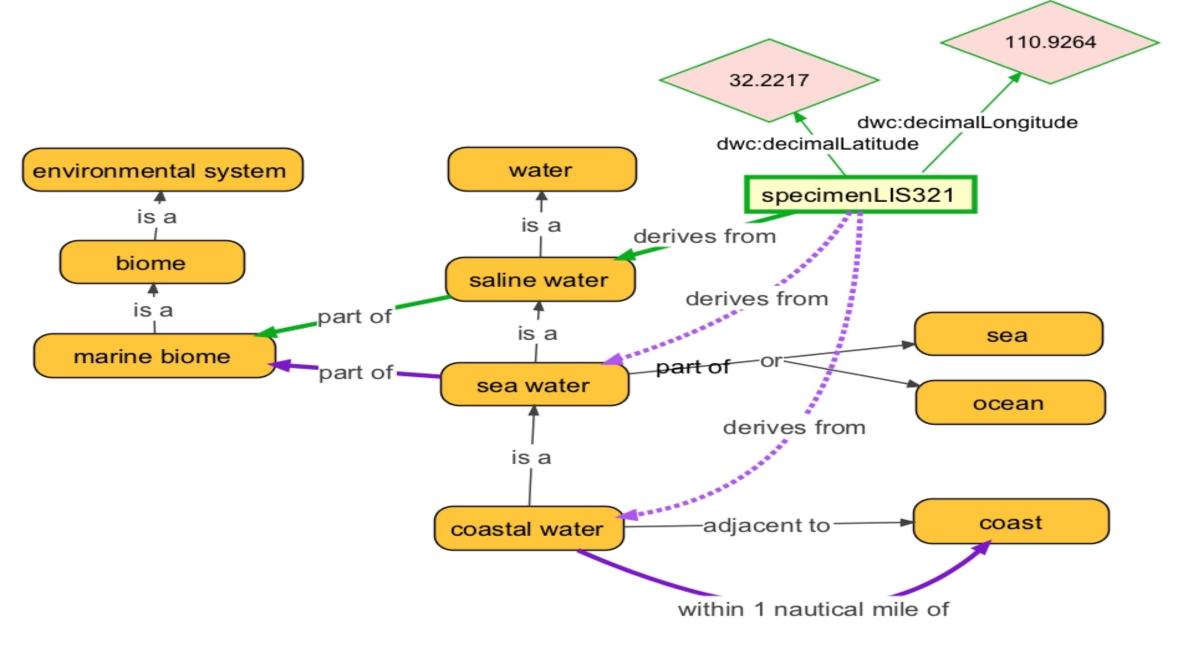
A	В	С	D	E	F	G	Н	I
SAMPLE_ACC	SAMPLE_DESCRIPTION	DESCRIPTION	SITE_DESCRIPTION	REGION	HABITAT_NAME	biome_label	biome_id	environmental_mate
CAM_SMPL_000800		Freshwater	Surface waters of an Eutrophic	Lake 227, Experimenta	freshwater habitat	freshwater lake bi	ENVO:01000252	fresh water surface v
CAM_SMPL_000800		Freshwater	Surface waters of an Eutrophic	Lake 227, Experimenta	freshwater habitat	freshwater lake bi	ENVO:01000252	fresh water surface v
CAM_SMPL_000801		Freshwater	Surface waters of an Eutrophic	Lake 227, Experimenta	freshwater habitat	freshwater lake bi	ENVO:01000252	fresh water surface v
CAM_SMPL_000803		Freshwater	Surface waters of an Eutrophic	Lake 227, Experimenta	freshwater habitat	freshwater lake bi	ENVO:01000252	fresh water surface v
CAM_SMPL_000805		Freshwater	Surface waters of an Eutrophic	Lake 227, Experimenta	freshwater habitat	freshwater lake bi	ENVO:01000252	fresh water surface v
CAM_SMPL_000807		Freshwater	Surface waters of an Eutrophic	Lake 227, Experimenta	freshwater habitat	freshwater lake bi	ENVO:01000252	fresh water surface v
CAM_SMPL_000809		Freshwater	Surface waters of an Eutrophic	Lake 227, Experimenta	freshwater habitat	freshwater lake bi	ENVO:01000252	fresh water surface v
CAM_SMPL_000811		Freshwater	Surface waters of an Eutrophic	Lake 227, Experimenta	freshwater habitat	freshwater lake bi	ENVO:01000252	fresh water surface v
CAM_SMPL_000813	Station ALOHA; North P	seawater	oligotrophic ocean	Pacific Ocean	marine habitat	oceanic pelagic zo	ENVO:01000033	sea water
CAM_SMPL_000814	Lassen Volcanic Nationa	Sediment	sediment from an acidic flood	Boiling Springs Lake	sediment	freshwater lake bi	ENVO:01000252	lake sediment
CAM_SMPL_000814	Shane Seep; Coal Oil Po	Marine Sedir	Anaerobic subsurface sedimer	Pacific	sediment	marine benthic bi	ENVO:01000024	marine sediment
CAM_SMPL_000814	Placed near a Riftia pate	Diffuse Flow	Pacific: Gulf of California	Pacific: Gulf of Californ	saline water	marine benthic bi	ENVO:01000024	sea water
CAM_SMPL_000814	http://4dgeo.whoi.edu/	sediment	Marine methane seep	Eel River	sediment	marine benthic bi	ENVO:01000024	marine sediment
CAM_SMPL_000814		seawater	Temperate marine estuary	Estuary	marine habitat	estuarine biome	ENVO:01000020	estuarine water
CAM_SMPL_000814	Santa Monica Basin, off	Marine sedin	Carbonate mound formed by I	Pacific	sediment	marine neritic ber	ENVO:01000025	marine sediment
CAM_SMPL_000814	Mesocosm experiment	PFGE bands	Costal atlantic seawater	Raunefjorden	saline water	neritic pelagic zon	ENVO:01000032	coastal water
CAM_SMPL_000814	Placed near a Riftia pate	Diffuse Flow	Placed near a Riftia patch near	Pacific: Gulf of Californ	saline water	marine benthic bi	ENVO:01000024	sea water
CAM_SMPL_000814	ice flow 50 miles NW of	Sea ice			marine habitat	marine biome	ENVO:00000447	ice
CAM_SMPL_000814		Saline water	uncharacterized, within perma	Arctic: Permafrost Sha	saline water	terrestrial biome	ENVO:00000446	saline water
CAM_SMPL_000814	Sea ice: Barrow, Alaska	Saline snow	polar coastal sea; saline snow	Arctic:Chukchi Sea	saline water	marine biome	ENVO:00000447	saline water ice
CAM_SMPL_000815		seawater	1000 m deep in Atlantic Ocear	near BATS	saline water	oceanic mesopela	ENVO:01000036	sea water
CAM_SMPL_000816		Freshwater	Surface waters of an Oligotrop	Lake 239, Experimenta	freshwater habitat	freshwater lake bi	ENVO:01000252	fresh water surface v
CAM SMPI NON818		Freshwater	Surface waters of an Oligotron	Take 239 Experiments	freshwater hahitat	freshwater lake hi	FNVO-01000252	fresh water I surface v




Use case 1: find all samples from coastal water







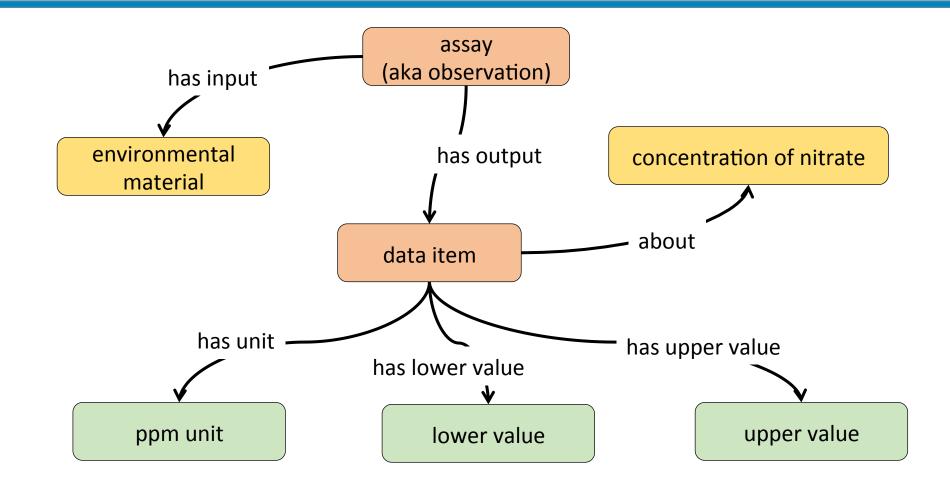
Use case 2: find data associated with high nitrogen environments

Steps:

- Specify nitrogen containing molecules in ChEBI
- Specify environmental materials in ENVO
- Define classes for concentrations of chemical in environmental materials
 - Need to set boundaries here
 - Good use for post-composition/anonymous classes
- Define data limitations for "high nitrogen environment"

increased object quality 'molecular quality' concentration of' acidity concentrated 'concentration of ammonium in soil' 'concentration of carbon atom in environmental material' 'concentration of carbon atom in soil' 'concentration of carbon atom in water' 'concentration of chloride in water' 'concentration of nitrate in groundwater' 'concentration of nitrate in soil' 'concentration of nitrogen atom in environmental material' 'concentration of nitrogen atom in soil' 'concentration of nitrogen atom in water' 'concentration of nitrogen atom in soil' 'concentration of nitrogen atom in water' diluted

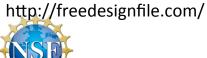
'concentration of'
and ('inheres in' some
(ammonium
and ('part of' some soil)))



How then to define a high nitrogen environment?

- Ingest the data as is, let the user decide.
- e.g.:
 - Find all sequences associated with samples where the total soil N was greater than Y
 - Find lists of species from sites where nitrate concentration is between X and Y

Obs. ID	Туре	Variable	Value	Unit	Date	Lat	Long
CAM354-1	water	nitrate	2	ppm	20160923	25.2456	98.6892
mtep-873	soil	nitrate	0-10	ppm	20121108	12.4134	92.2754



Conclusions

- Data clean up trumps ontologies, for legacy data.
- Don't try to force parameter categories (high, low, near, far, etc.) into ENVO or other reference ontologies.
- Use data driven queries to flexibly handle searches.

